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to detect and measure the retinal vessels. The vessel width measure-
ment not only provides the size of blood vessel but it is also useful for
optimizing the matched filter to improve the successful rate of detec-
tion.
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An Advanced Detrending Method With Application to
HRV Analysis

Mika P. Tarvainen, Perttu O. Ranta-aho, and Pasi A. Karjalainen

Abstract—An advanced, simple to use, detrending method to be used be-
fore heart rate variability analysis (HRV) is presented. The method is based
on smoothness priors approach and operates like a time-varying finite-im-
pulse response high-pass filter. The effect of the detrending on time- and
frequency-domain analysis of HRV is studied.

Index Terms—Heart rate variability, signal detrending, smoothness
priors, spectral analysis.

I. INTRODUCTION

Heart rate variability (HRV) is a widely used quantitative marker of
autonomic nervous system activity. Various time- and frequency-do-
main methods have been applied to HRV analysis [1]. A traditional
spectral method, power spectral density (PSD) estimation, provides in-
formation about power distribution as a function of frequency. Spec-
tral estimation inherently assumes that the signal is at least weakly sta-
tionary. However, real HRV is usually nonstationary. Nonstationarities
like slow linear or more complex trends in the HRV signal, can cause
distortion to time- and frequency-domain analysis. Origins for nonsta-
tionarities in HRV are discussed, e.g., in [2].

Two kinds of methods have been used to get around the nonsta-
tionarity problem. Weberet al. [3] suggested that HRV data should
be systematically tested for nonstationarities and that only stationary
segments should be analyzed. Representativeness of these segments in
some cases, in comparison with the whole HRV signal, was, however,
questioned in [4]. Other methods try to remove the slow nonstationary
trends from the HRV signal before analysis. The detrending is usually
based on first-order [5], [6] or higher order polynomial [6], [7] models.

In this paper, we present an advanced detrending procedure based on
smoothness priors approach. The presented method is simple to use,
since the frequency response can be adjusted adequately to different
situations by a single parameter. The properties of the method are tested
by applying it to real RR interval data and the effect of the method on
time- and frequency-domain analysis of HRV is considered.

II. M ETHODS

A. Data Acquisition

The Electrocardiogram (ECG) was recorded continuously (Neu-
roScan by NeuroSoft Inc.) during a passive event related potential
paradigm, where subject sat in a chair while auditory pitch stimuli
were delivered to right ear. Sampling rate of the ECG was 500 Hz.
Discrete event series,Ri � Ri�1 intervals as a function ofRi occur-
rence times, was constructed by an adaptive QRS detector algorithm.
The QRS detector was based on the one presented in [8]. As a result of
the detection algorithm, an unevenly sampled RR interval time series
was obtained. In order to recover an evenly sampled signal from the
irregularly sampled event series, cubic interpolation was applied.
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B. Detrending With Smoothness Priors Method

We denote the RR interval time series as

z = (R2 �R1; R3 �R2; . . . ; RN �RN�1)
T 2 N�1 (1)

whereN is the number ofR peaks detected. The RR series can be
considered to consist of two components

z = zstat + ztrend (2)

wherezstat is the nearly stationary RR series of interest andztrend is
the low-frequency aperiodic trend component. The trend component
can be modeled with a linear observation model as

ztrend = H� + v (3)

whereH 2 (N�1)�M is the observation matrix,� 2 M are the
regression parameters, andv is the observation error. The task is then to
estimate the parameters by some fitting procedure so that the prediction
ẑtrend = H�̂ can be used as the estimate of the trend. The properties
of the estimate depend strongly on the properties of the basis vectors
(columns of the matrixH) in the fitting. A widely used method for the
solution of the estimatê� is the least squares method. We use, however,
a more general approach for the estimation of�̂. We state the so-called
regularized least squares solution

�̂� = argmin
�

kH� � zk2 + �
2kDd(H�)k2 (4)

where� is the regularization parameter andDd indicates the discrete
approximation of thedth derivative operator. This is clearly a modifi-
cation of the ordinary least squares solution to the direction in which
the side normkDd(H�)k gets smaller. In this way, we can implement
prior information about the predicted trendH� to the estimation. The
solution of (4) can be written in the form

�̂� = H
T
H + �

2
H

T
D
T
dDdH

�1

H
T
z (5)

ẑtrend =H�̂� (6)

whereẑtrend is the estimated trend which we want to remove. A de-
tailed derivation of the result can be found in [9].

The selection of the observation matrixH can be implemented ac-
cording to some known properties of the dataz. For example, a generic
set of Gaussian shaped functions or sigmoids can be used. However, we
want to avoid the problems arising from the basis selection and in this
paper we use the trivial choice of identity matrix for the observation
matrixH = I 2 (N�1)�(N�1). The regularization part of (4) can be
understood to draw the solution toward the null space of the regulariza-
tion matrixDd. The null space of the second-order difference matrix
contains all first-order curves and, thus,D2 is a good choice for esti-
mating the aperiodic trend of RR series. The second-order difference
matrixD2 2 (N�3)�(N�1) is of the form

D2 =

1 �2 1 0 � � � 0

0 1 �2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 � � � 0 1 �2 1

: (7)

With these specific choices, the method is called the smoothness
priors method [10] and the detrended nearly stationary RR series can
be written as

ẑstat = z �H�̂� = I � (I + �
2
D
T
2 D2)

�1
z: (8)

(a)

(b)

Fig. 1. (a) Time-varying frequency response ofL (N � 1= 50 and� = 10).
Only the first half of the frequency response is presented, since the other half
is identical. (b) Frequency responses, obtained from the middle row ofL (cf.
bold lines), for� = 1, 2, 4, 10, 20, 50, and 300. The corresponding cutoff
frequencies are 0.189, 0.132, 0.093, 0.059, 0.041, 0.025, and 0.011 times the
sampling frequency.

C. PSD Estimation

Methods for PSD estimation can be classified as nonparametric (e.g.,
methods based on fast Fourier transform) and parametric [methods
based on, e.g., autoregressive (AR) time series modeling]. In the latter
approach, the RR time series is modeled as anAR(p) process

zt = �

p

j=1

ajzt�j + et; t = p+ 1; . . . ; N � 1 (9)

wherep is the model order,aj are the AR coefficients, andet is the
noise term. A modified covariance method is used to solve the AR
model. The power spectrum estimatePz is then calculated as

Pz(!) =
�2

j1 + p

j=1 aje
�i!j j2

(10)

where�2 is the variance of the prediction error of the model. [11]

III. RESULTS

In order to demonstrate the properties of the proposed detrending
method, we first consider its frequency response. Equation (8) can be
written asẑstat = Lz, whereL = I � (I + �2DT

2 D2)
�1 corre-

sponds to a time-varying finite-impulse response high-pass filter. The
frequency response ofL for each discrete time point, obtained as a
Fourier transform of its rows, is presented in Fig. 1(a). It can be seen
that the filter is mostly constant, but the beginning and end of the signal
are handled differently. The filtering effect is attenuated for the first
and last elements ofz and, thus, the distortion of end points of data
is avoided. The effect of the smoothing parameter� on the frequency
response of the filter is presented in Fig. 1(b). The cutoff frequency of
the filter decreases when� is increased. Besides, the� parameter the
frequency response naturally depends on the sampling rate of signalz.

The performance of the presented method on real RR interval time
series data is presented in Fig. 2, where it is applied to RR data of four
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(a)

(b)

(c)

Fig. 2. The effect of the detrending method on time- and frequency-domain analysis. (a) Original RR series and fitted trends (above) and detrended RR series
(below) for four different data segments. The duration of each data segment is 200 s and they were obtained from different subjects. (b) Effect of the detrending
procedure on three time-domain parameters (SDNN, RMSSD, and pNN50). (c) PSD estimates for original (thin line) and detrended (bold line) RR series with
Welch’s periodogram method (above) and by using a sixteenth-order AR model (below).

different subjects. Each RR series was first interpolated to obtain a reg-
ularly sampled series with sampling rate of 4 Hz. The detrending was
then performed using a smoothing parameter� = 300, which equals a
cutoff frequency of 0.043 Hz. The four RR series with the fitted trends
and the corresponding detrended series are presented in Fig. 2(a). Three
different time-domain parameters, recommended in [1], were selected
to demonstrate the effect of the used detrending method on time-do-
main analysis [Fig. 2(b)]. These were the standard deviation of all RR
intervals (SDNN), the square root of the mean-squared differences of
successive RR intervals (RMSSD) and the relative amount of succes-
sive RR intervals differing more than 50 ms (pNN50).

The effect of the presented detrending method on the PSD estimates
calculated with Welch’s periodogram method and by AR modeling is
presented in Fig. 2(c). AR model orderp = 16 was selected according
to [1], by using the corrected Akaike information criteria [12]. In each
original PSD estimate, the intensity of the very low-frequency (VLF)
component is clearly stronger than the intensity of low-frequency (LF)
or high-frequency (HF) component. Each spectrum is, however, lim-
ited to 0.035 s2=Hz to enable the comparison of the spectrums before
and after detrending. For Welch’s method, the VLF components are
properly removed while the higher frequencies are not significantly al-
tered by the detrending. But when AR models of relatively low orders
are used, which is usually desirable in HRV analysis in order to enable
a distinct division of the spectrum into VLF, LF, and HF components,
the effect of detrending is remarkable. In each original AR spectrum,
the peak around 0.1 Hz is spuriously covered by the strong VLF com-
ponent. However, in the AR spectrums obtained after detrending the
component near 0.1 Hz is more realistic when compared to the spec-
trums obtained by Welch’s method.

IV. DISCUSSION

We have presented an advanced detrending method with application
to HRV analysis. The method is based on smoothness priors formu-
lation. The main advantage of the method, compared to methods pre-
sented in [5] and [7], is its simplicity. The frequency response of the
method is adjusted with a single parameter. This smoothing parameter
� should be selected in such a way that the spectral components of
interest are not significantly affected by the detrending. Another ad-
vantage of the presented method is that the filtering effect is attenuated
in the beginning and the end of the data and, thus, the distortion of data
end points is avoided.

The effect of detrending on time- and frequency-domain analysis
of HRV was demonstrated. In time domain, most effect is focused
on SDNN, which describes the amount of overall variance of RR se-
ries. Instead only little effect is focused on RMSSD and pNN50 which
both describe the differences in successive RR intervals. In frequency-
domain, the low-frequency trend components increase the power of
VLF component. Thus, when using relatively low-order AR models in
spectrum estimation detrending is especially recommended, since the
strong VLF component distorts other components, especially the LF
component, of the spectrum.

The presented detrending method can be applied to, e.g., respiratory
sinus arrhythmia (RSA) quantification. RSA component is separated
from other frequency components of HRV by adjusting the smoothing
parameter� properly. For other purposes of HRV analysis, one should
make sure that the detrending does not lose any useful information from
the lower frequency components. Finally, it should be emphasized that
the presented detrending method is not restricted to HRV analysis only,
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but can be applied as well to other biomedical signals, e.g., for de-
trending of electroencephalogram (EEG) signals in quantitative EEG
analysis.

APPENDIX

All the computation of this paper are executed using MATLAB 6 of
The MathWorks Inc. The source code, in all its simplicity, for applying
the presented detrending method to signalz is listed below.

For more information, see http://venda.uku.fi/research/biosignal.
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System Design and Performance of a Unilateral Horizontal
Semicircular Canal Prosthesis

Wangsong Gong and Daniel M. Merfeld*

Abstract—We have reported preliminary results regarding a prototype
semicircular canal prosthesis and concluded that it can provide rotational
cues to the nervous system. This paper presents the system design of the
prosthesis, and also reports the prosthesis system performance and effec-
tiveness.

The prosthesis delivers electrical pulses to the nerve branch innervating
the horizontal semicircular canal on one side via implanted electrodes. To
allow us to encode both directions of angular velocity, the baseline stimu-
lation pulse frequency was set at 150 Hz, which is somewhat higher than
the average firing rate of afferents innervating the semicircular canals in
normal guinea pigs ( 60 Hz). A sensor measures angular velocity to mod-
ulate (increase or decrease) the pulse rate.

The prosthetic system was provided to a guinea pig whose horizontal
canals were surgically plugged. The animal responded to the baseline stim-
ulation initially and adapted to the baseline stimulation in roughly one
day. After this baseline adaptation the animal responded to yaw rotation,
showing that the function of the canals was partially restored. The experi-
ments also show that the nervous system adapts to the artificial rotational
cue provided via electrical stimulation.

Index Terms—Adaptation, electrical stimulation, guinea pig, neural
prosthesis, semicircular canal, vestibular.

I. INTRODUCTION

The primary function of the vestibular system is to provide the ner-
vous system with information about head motion and orientation. This
information is essential for postural control and eye movements that
compensate for head motion [1]. The afferent fibers innervating the
vestibular system run to the vestibular nuclei in the brainstem via the
VIIIth cranial nerve. The semicircular canals are the portion of the
vestibular system that are sensitive to rotational stimulation; the hor-
izontal (or lateral) semicircular canals respond to yaw head rotations
(i.e., those head rotations made when shaking your head to indicate
“no”).

Vestibulo-ocular reflexes (VOR) are reflexive eye movements
elicited in response to head movements to stabilize the image of the
external world on the retina. They are objective, easy to measure, and
the most common way to evaluate the vestibular function. Scientific
investigations in mammals have documented the effect of electrical
stimulation on vestibular responses including VOR [2]–[4] and
postural control [5]–[7]. Earlier studies of acute vestibular stimulation
have shown that pulsatile electrical stimulation of the canal nerves
induces nystagmus parallel to the plane of the canal innervated by the
stimulated nerve branch [2], [4]. This mimics the normal response
elicited by the semicircular canals, since the canals are primarily
sensitive to rotations about an axis that is roughly orthogonal to the
plane of the semicircular canal [8]. Rotational cues from the canals are
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